SYNTHESIS OF 11-HYDROXYMETHYLPROSTAGLANDINS

Angel Guzmán and Joseph M. Muchowski^{*}

Research Laboratories, Syntex, S. A., Apartado Postal 10-820, Mexico 10, D. F. (Received in USA 7 April 1975; received in UK for publication 6 May 1975)

The total synthesis of some 9,11-bishydroxymethylprostaglandin F_1 derivatives has recently been described^{2,3}. In connection with our interest in this area, we now report a remarkably simple synthesis of the 11 α - and 11 β -hydroxymethylprostaglandin E_2 derivatives (2a) and (2b). These compounds not only are of interest per se, but also provide a useful point of embarkation for the synthesis of other modified prostaglandins⁴.

The benzophenone sensitized photoaddition of methanol to PGA $_2$ methyl ester $(1)^{\circ}$ resulted in the formation of the two epimeric 11-hydroxymethyl compounds (2a) {oil; { α }₁ -77.8; ν_{max} 3500, 3450, 1730 cm⁻¹; n.m.r. 3.69 p.p.m. (m, 11 α - (H_20) and (2b) {oil; { α }_D ± 0 ; ν_{max} 3625, 3455, 1740 cm⁻¹; n.m.r. 3.68 (m, 11β-CH20)} in 22% and 10% yield, respectively. N.m.r. double resonance experiments, carried out in the presence of the shift reagent Eu(fod)₃, gave $J_{8,12} \simeq J_{11,12} \simeq$ 9.5 Hz for (2a), and $J_{8,12} = 11$, $J_{11,12} = 7$ Hz for (2b), which established⁹ the stereochemistry as trans, trans for (2a) and trans, cis for (2b). The stereochemistry about C-11 and C-12 was further supported by the following sequence of reactions. Reduction of (2a) with sodium borohydride gave a separable (t.l.c.), equimolar mixture of the 9a- (3a) {oil; {a}_D +21.6; n.m.r. 4.02 (m, H-9,15)} and 9β - (3b) {oil; { α }_D +8.3; n.m.r. 3.88 (m, H-9), 4.00 (m, H-15)} alcohols, which, upon oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in benzene at 50°, gave the stable, epimeric enones (<u>4a</u>) {oil; { α }_D +35.1; ν _{max} 3630, 3530 1730, 1693, 1665, 1622 cm⁻¹; λ_{max} 232.5 nm (log ϵ 4.10); n.m.r. 4.14 (m, H-9)} and (<u>4b</u>) {oi1; { α }_D +23.1; ν_{max} 3630, 3460, 1730, 1693, 1665, 1624 cm⁻¹; λ_{max} 232.5 nm (log ε 4.07); n.m.r. 3.92 (m, H-9)}. On the other hand, the sodium

borohydride reduction of (<u>2b</u>) gave, as expected¹¹, a single alcohol (<u>5</u>) {oil; { α }_D +23.2; n.m.r. 3.99 (m, H-9,15)} to which the 9ß-configuration was assigned¹². Oxidation of this triol with DDQ predictably² gave the bicyclic ether (<u>6</u>) {oil; { α }_D <u>+</u>0; ν _{max} 3625, 3460, 1735 cm⁻¹; n.m.r. 2.37 (d, J = 7.4 Hz; 14-CH₂), 2.54 (t, J = 6 Hz; 16-CH₂), 3.53, 392 (m, CH₂O and H-9), 4.27 (m, H-13)} derived from the conjugate addition of the <u>cis</u> disposed hydroxymethyl group to the intermediate enone.

The alcohols (<u>3a</u>) and (<u>3b</u>) were also prepared (in 40% combined overall yield) from the known¹³ nitromethyl ketone (<u>2c</u>). This was accomplished by the borohydride reduction of (<u>2c</u>) to a 1:3 mixture of the alcohols (<u>3c</u>) {oil; $\{\alpha\}_{D}$ -36.6; n.m.r. 4.20 (m, H-9)} and (<u>3d</u>) {oil; $\{\alpha\}_{D}$ +2.3; n.m.r. 4.06 (m, H-9)}, the nitronate salts of which were converted, with buffered aqueous titanium trichloride¹⁴, into the unstable aldehydes (<u>3e</u>) {oil; $\{\alpha\}_{D}$ +24.4; n.m.r. 9.61 (d, CHO)} and (<u>3f</u>) {oil; $\{\alpha\}_{D}$ +2.7; n.m.r. 9.63 (d, CHO)}. Sodium borohydride reduction of these aldehydes gave (<u>3a</u>) and (<u>3b</u>), respectively, identical to those derived from (<u>2a</u>).

The transformation of $(\underline{2c})$ into the alcohols $(\underline{3a})$ and $(\underline{3b})$ proves that the nitromethyl group in $(\underline{2c})$ does indeed occupy the α -position, an assignment which was previously¹³ made, presumably on the basis of steric approach control considerations. This, to our knowledge, is the first reported instance of a rigorous proof of the stereochemistry of a product derived from a conjugate addition to PGA₂.

The sensitized photoaddition of methanol to the 15-acetate or the 15-tetrahydropyranyl ether of PGA_2 methyl ester gave mixtures of the corresponding 11hydroxymethyl compounds which were similar in composition to that obtained from (<u>1</u>).

REFERENCES

¹. Contribution No. 452 from the Syntex Institute of Organic Chemistry.

². I.T. Harrison, R. Grayshan, T. Williams, A. Semenovski, and J.H. Fried, Tetrahedron Letters 5151 (1972).

- ³. J. Katsube, H. Shimomura, and M. Matsui, Agr. Biol. Chem., <u>36</u>, 1997 (1972).
- After this work was completed, two syntheses of compounds (<u>2a</u>) and (<u>3a</u>), different from those described herein, were reported; D.P. Strike, W. Kao, and M. Rosenthale, Abstracts of Meeting of American Chemical Society, Mar. 30-Apr. 5, 1974, Medicinal Chemistry paper No. 30; D.P. Strike and W. Kao, U.S. Patent 3,845,042 (1974), and O. Oda, K. Sakai, T. Usa, H. Katano, Japan Kokai 74 43 948 (1974); Chem. Abstr., <u>81</u>, 135538z (1974); Japan Kokai 74 43 947 (1974); Chem. Abstr., <u>81</u>, 135539a (1974).
- ⁵. B. Fraser-Ried, N.L. Holder, and M.B. Yunker, J.C.S. Chem. Comm., 1286 (1972).
- ⁶. Natural PGA₂, isolated from <u>Plexaura Homomalla</u> (Esper.) by the method of A. Prince, F.S. Alvarez, and J. Young, Prostaglandins, <u>3</u>, 531 (1973), was esterified with diazomethane.
- All new compounds had elemental analyses and/or mass spectra consistent with the assigned structures.
- ⁸. For (<u>2a</u>) and (<u>2b</u>) J_{12,13} = 8 Hz. The authors thank MS. E. Díaz, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, for carrying out these experiments.
- ⁹. R. Pappo and P.M. Collins, Tetrahedron Letters, 2627 (1974).
- ¹⁰. E.J. Corey, I. Vlattas, N.H. Andersen, and K.Harding, J. Amer. Chem. Soc., <u>90</u>, 3247 (1968).
- ¹¹. The sodium borohydride reduction of prostaglandin 9-ketones bearing a bulky 11β-substituent gives predominantly or exclusively the 9β-alcohol, J.M. Muchowski and E. Velarde, unpublished observations. See also W.P. Schneider, U.S. Patent 3,758,542 (1973).
- ¹². J.F. Bagli and T. Bogri, Tetrahedron Letters, 5 (1967); 1639 (1969).
- ¹³. C.V. Grudzinskas and M.J. Weiss, Tetrahedron Letters, 141 (1973).
- ¹⁴. J.E. McMurry and J. Melton, J. Org. Chem., 38, 4367 (1973).

(1)

(2) a) R^{1} = H, R^{2} = CH₂OH b) R^{1} = CH₂OH, R^{2} = H c) R^{1} = H, R^{2} = CH₂NO₂

(3) a)
$$R^{1}=$$
 OH, $R^{2}=H$, $R^{3}=CH_{2}OH$
b) $R^{1}=H$, $R^{2}=OH$, $R^{3}=CH_{2}OH$
c) $R^{1}=OH$, $R^{2}=H$, $R^{3}=CH_{2}NO_{2}$
d) $R^{1}=H$, $R^{2}=OH$, $R^{3}=CH_{2}NO_{2}$
e) $R^{1}=OH$, $R^{2}=H$, $R^{3}=CHO$
f) $R^{1}=H$, $R^{2}=OH$, $R^{3}=CHO$

(<u>5</u>)

(<u>6</u>)